首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:A confidence predictor for logD using conformal regression and a support-vector machine
  • 本地全文:下载
  • 作者:Maris Lapins ; Staffan Arvidsson ; Samuel Lampa
  • 期刊名称:Journal of Cheminformatics
  • 印刷版ISSN:1758-2946
  • 电子版ISSN:1758-2946
  • 出版年度:2018
  • 卷号:10
  • 期号:1
  • 页码:17
  • DOI:10.1186/s13321-018-0271-1
  • 语种:English
  • 出版社:BioMed Central
  • 摘要:Lipophilicity is a major determinant of ADMET properties and overall suitability of drug candidates. We have developed large-scale models to predict water–octanol distribution coefficient (logD) for chemical compounds, aiding drug discovery projects. Using ACD/logD data for 1.6 million compounds from the ChEMBL database, models are created and evaluated by a support-vector machine with a linear kernel using conformal prediction methodology, outputting prediction intervals at a specified confidence level. The resulting model shows a predictive ability of $$\hbox {Q}^,=0.973$$ Q 2 = 0.973 and with the best performing nonconformity measure having median prediction interval of $$\pm ~0.39$$ ± 0.39 log units at 80% confidence and $$\pm ~0.60$$ ± 0.60 log units at 90% confidence. The model is available as an online service via an OpenAPI interface, a web page with a molecular editor, and we also publish predictive values at 90% confidence level for 91 M PubChem structures in RDF format for download and as an URI resolver service.
  • 关键词:Conformal prediction ; Machine learning ; QSAR ; Support-vector machine ; LogD ; RDF
国家哲学社会科学文献中心版权所有