首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:Improving chemical disease relation extraction with rich features and weakly labeled data
  • 本地全文:下载
  • 作者:Yifan Peng ; Chih-Hsuan Wei ; Zhiyong Lu
  • 期刊名称:Journal of Cheminformatics
  • 印刷版ISSN:1758-2946
  • 电子版ISSN:1758-2946
  • 出版年度:2016
  • 卷号:8
  • 期号:1
  • 页码:53
  • DOI:10.1186/s13321-016-0165-z
  • 语种:English
  • 出版社:BioMed Central
  • 摘要:Due to the importance of identifying relations between chemicals and diseases for new drug discovery and improving chemical safety, there has been a growing interest in developing automatic relation extraction systems for capturing these relations from the rich and rapid-growing biomedical literature. In this work we aim to build on current advances in named entity recognition and a recent BioCreative effort to further improve the state of the art in biomedical relation extraction, in particular for the chemical-induced disease (CID) relations. We propose a rich-feature approach with Support Vector Machine to aid in the extraction of CIDs from PubMed articles. Our feature vector includes novel statistical features, linguistic knowledge, and domain resources. We also incorporate the output of a rule-based system as features, thus combining the advantages of rule- and machine learning-based systems. Furthermore, we augment our approach with automatically generated labeled text from an existing knowledge base to improve performance without additional cost for corpus construction. To evaluate our system, we perform experiments on the human-annotated BioCreative V benchmarking dataset and compare with previous results. When trained using only BioCreative V training and development sets, our system achieves an F-score of 57.51 %, which already compares favorably to previous methods. Our system performance was further improved to 61.01 % in F-score when augmented with additional automatically generated weakly labeled data. Our text-mining approach demonstrates state-of-the-art performance in disease-chemical relation extraction. More importantly, this work exemplifies the use of (freely available) curated document-level annotations in existing biomedical databases, which are largely overlooked in text-mining system development.
  • 关键词:Chemical-induced disease ; Relation extraction ; BioNLP ; Text mining
国家哲学社会科学文献中心版权所有