首页    期刊浏览 2024年11月03日 星期日
登录注册

文章基本信息

  • 标题:Coordinating Measurements in Uncertain Participatory Sensing Settings
  • 本地全文:下载
  • 作者:Alexandros Zenonos ; Sebastian Stein ; Nicholas R. Jennings
  • 期刊名称:Journal of Artificial Intelligence Research
  • 印刷版ISSN:1076-9757
  • 出版年度:2018
  • 卷号:61
  • 页码:433-474
  • 出版社:American Association of Artificial
  • 摘要:Environmental monitoring allows authorities to understand the impact of potentially harmful phenomena, such as air pollution, excessive noise, and radiation. Recently, there has been considerable interest in participatory sensing as a paradigm for such large-scale data collection because it is cost-effective and able to capture more fine-grained data than traditional approaches that use stationary sensors scattered in cities. In this approach, ordinary citizens (non-expert contributors) collect environmental data using low-cost mobile devices. However, these participants are generally self-interested actors that have their own goals and make local decisions about when and where to take measurements. This can lead to highly inefficient outcomes, where observations are either taken redundantly or do not provide sufficient information about key areas of interest. To address these challenges, it is necessary to guide and to coordinate participants, so they take measurements when it is most informative. To this end, we develop a computationally-efficient coordination algorithm (adaptive Best-Match) that suggests to users when and where to take measurements. Our algorithm exploits probabilistic knowledge of human mobility patterns, but explicitly considers the uncertainty of these patterns and the potential unwillingness of people to take measurements when requested to do so. In particular, our algorithm uses a local search technique, clustering and random simulations to map participants to measurements that need to be taken in space and time. We empirically evaluate our algorithm on a real-world human mobility and air quality dataset and show that it outperforms the current state of the art by up to 24% in terms of utility gained.
国家哲学社会科学文献中心版权所有