首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:A Neural Probabilistic Structured-Prediction Method for Transition-Based Natural Language Processing
  • 本地全文:下载
  • 作者:Hao Zhou ; Yue Zhang ; Chuan Cheng
  • 期刊名称:Journal of Artificial Intelligence Research
  • 印刷版ISSN:1076-9757
  • 出版年度:2017
  • 卷号:58
  • 页码:703-729
  • 出版社:American Association of Artificial
  • 摘要:We propose a neural probabilistic structured-prediction method for transition-based natural language processing, which integrates beam search and contrastive learning. The method uses a global optimization model, which can leverage arbitrary features over non-local context. Beam search is used for efficient heuristic decoding, and contrastive learning is performed for adjusting the model according to search errors. When evaluated on both chunking and dependency parsing tasks, the proposed method achieves significant accuracy improvements over the locally normalized greedy baseline on the two tasks, respectively.
国家哲学社会科学文献中心版权所有