首页    期刊浏览 2025年06月02日 星期一
登录注册

文章基本信息

  • 标题:Learning Optimal Bayesian Networks: A Shortest Path Perspective
  • 本地全文:下载
  • 作者:C. Yuan ; B. Malone
  • 期刊名称:Journal of Artificial Intelligence Research
  • 印刷版ISSN:1076-9757
  • 出版年度:2013
  • 卷号:48
  • 页码:23-65
  • 出版社:American Association of Artificial
  • 摘要:In this paper, learning a Bayesian network structure that optimizes a scoring function for a given dataset is viewed as a shortest path problem in an implicit state-space search graph. This perspective highlights the importance of two research issues: the development of search strategies for solving the shortest path problem, and the design of heuristic functions for guiding the search. This paper introduces several techniques for addressing the issues. One is an A* search algorithm that learns an optimal Bayesian network structure by only searching the most promising part of the solution space. The others are mainly two heuristic functions. The first heuristic function represents a simple relaxation of the acyclicity constraint of a Bayesian network. Although admissible and consistent, the heuristic may introduce too much relaxation and result in a loose bound. The second heuristic function reduces the amount of relaxation by avoiding directed cycles within some groups of variables. Empirical results show that these methods constitute a promising approach to learning optimal Bayesian network structures.
国家哲学社会科学文献中心版权所有