首页    期刊浏览 2025年11月04日 星期二
登录注册

文章基本信息

  • 标题:On Polynomial Sized MDP Succinct Policies
  • 本地全文:下载
  • 作者:P. Liberatore
  • 期刊名称:Journal of Artificial Intelligence Research
  • 印刷版ISSN:1076-9757
  • 出版年度:2004
  • 卷号:21
  • 页码:551-577
  • 出版社:American Association of Artificial
  • 摘要:Policies of Markov Decision Processes (MDPs) determine the next action to execute from the current state and, possibly, the history (the past states). When the number of states is large, succinct representations are often used to compactly represent both the MDPs and the policies in a reduced amount of space. In this paper, some problems related to the size of succinctly represented policies are analyzed. Namely, it is shown that some MDPs have policies that can only be represented in space super-polynomial in the size of the MDP, unless the polynomial hierarchy collapses. This fact motivates the study of the problem of deciding whether a given MDP has a policy of a given size and reward. Since some algorithms for MDPs work by finding a succinct representation of the value function, the problem of deciding the existence of a succinct representation of a value function of a given size and reward is also considered.
国家哲学社会科学文献中心版权所有