首页    期刊浏览 2025年06月16日 星期一
登录注册

文章基本信息

  • 标题:Nonapproximability Results for Partially Observable Markov Decision Processes
  • 本地全文:下载
  • 作者:C. Lusena ; J. Goldsmith ; M. Mundhenk
  • 期刊名称:Journal of Artificial Intelligence Research
  • 印刷版ISSN:1076-9757
  • 出版年度:2001
  • 卷号:14
  • 页码:83-103
  • 出版社:American Association of Artificial
  • 摘要:We show that for several variations of partially observable Markov decision processes, polynomial-time algorithms for finding control policies are unlikely to or simply don't have guarantees of finding policies within a constant factor or a constant summand of optimal. Here ``unlikely'' means ``unless some complexity classes collapse,'' where the collapses considered are P=NP, P=PSPACE, or P=EXP. Until or unless these collapses are shown to hold, any control-policy designer must choose between such performance guarantees and efficient computation.
国家哲学社会科学文献中心版权所有