首页    期刊浏览 2025年07月08日 星期二
登录注册

文章基本信息

  • 标题:Variational Probabilistic Inference and the QMR-DT Network
  • 本地全文:下载
  • 作者:T. S. Jaakkola ; M. I. Jordan
  • 期刊名称:Journal of Artificial Intelligence Research
  • 印刷版ISSN:1076-9757
  • 出版年度:1999
  • 卷号:10
  • 页码:291-322
  • 出版社:American Association of Artificial
  • 摘要:We describe a variational approximation method for efficient inference in large-scale probabilistic models. Variational methods are deterministic procedures that provide approximations to marginal and conditional probabilities of interest. They provide alternatives to approximate inference methods based on stochastic sampling or search. We describe a variational approach to the problem of diagnostic inference in the `Quick Medical Reference' (QMR) network. The QMR network is a large-scale probabilistic graphical model built on statistical and expert knowledge. Exact probabilistic inference is infeasible in this model for all but a small set of cases. We evaluate our variational inference algorithm on a large set of diagnostic test cases, comparing the algorithm to a state-of-the-art stochastic sampling method.
国家哲学社会科学文献中心版权所有