首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:A Selective Macro-learning Algorithm and its Application to the NxN Sliding-Tile Puzzle
  • 本地全文:下载
  • 作者:L. Finkelstein ; S. Markovitch
  • 期刊名称:Journal of Artificial Intelligence Research
  • 印刷版ISSN:1076-9757
  • 出版年度:1998
  • 卷号:8
  • 页码:223-263
  • 出版社:American Association of Artificial
  • 摘要:One of the most common mechanisms used for speeding up problem solvers is macro-learning. Macros are sequences of basic operators acquired during problem solving. Macros are used by the problem solver as if they were basic operators. The major problem that macro-learning presents is the vast number of macros that are available for acquisition. Macros increase the branching factor of the search space and can severely degrade problem-solving efficiency. To make macro learning useful, a program must be selective in acquiring and utilizing macros. This paper describes a general method for selective acquisition of macros. Solvable training problems are generated in increasing order of difficulty. The only macros acquired are those that take the problem solver out of a local minimum to a better state. The utility of the method is demonstrated in several domains, including the domain of NxN sliding-tile puzzles. After learning on small puzzles, the system is able to efficiently solve puzzles of any size.
国家哲学社会科学文献中心版权所有