期刊名称:Sankhya. Series A, mathematical statistics and probability
印刷版ISSN:0976-836X
电子版ISSN:0976-8378
出版年度:2018
卷号:80
期号:1
页码:168-194
DOI:10.1007/s13171-017-0098-2
语种:English
出版社:Indian Statistical Institute
摘要:In this paper, we propose a new bootstrap algorithm to obtain prediction intervals for generalized autoregressive conditionally heteroscedastic (GARCH(1,1)) process which can be applied to construct prediction intervals for future returns and volatilities. The advantages of the proposed method are twofold: it (a) often exhibits improved performance and (b) is computationally more efficient compared to other available resampling methods. The superiority of this method over the other resampling method-based prediction intervals is explained with Spearman’s rank correlation coefficient. The finite sample properties of the proposed method are also illustrated by an extensive simulation study and a real-world example.
关键词:Financial time series ; Prediction ; Resampling methods ; Spearman’s rank correlation