首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:New and Fast Block Bootstrap-Based Prediction Intervals for GARCH(1,1) Process with Application to Exchange Rates
  • 作者:Beste Hamiye Beyaztas ; Ufuk Beyaztas ; Soutir Bandyopadhyay
  • 期刊名称:Sankhya. Series A, mathematical statistics and probability
  • 印刷版ISSN:0976-836X
  • 电子版ISSN:0976-8378
  • 出版年度:2018
  • 卷号:80
  • 期号:1
  • 页码:168-194
  • DOI:10.1007/s13171-017-0098-2
  • 语种:English
  • 出版社:Indian Statistical Institute
  • 摘要:In this paper, we propose a new bootstrap algorithm to obtain prediction intervals for generalized autoregressive conditionally heteroscedastic (GARCH(1,1)) process which can be applied to construct prediction intervals for future returns and volatilities. The advantages of the proposed method are twofold: it (a) often exhibits improved performance and (b) is computationally more efficient compared to other available resampling methods. The superiority of this method over the other resampling method-based prediction intervals is explained with Spearman’s rank correlation coefficient. The finite sample properties of the proposed method are also illustrated by an extensive simulation study and a real-world example.
  • 关键词:Financial time series ; Prediction ; Resampling methods ; Spearman’s rank correlation
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有