首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Estimator Selection: a New Method with Applications to Kernel Density Estimation
  • 作者:Claire Lacour ; Pascal Massart ; Vincent Rivoirard
  • 期刊名称:Sankhya. Series A, mathematical statistics and probability
  • 印刷版ISSN:0976-836X
  • 电子版ISSN:0976-8378
  • 出版年度:2017
  • 卷号:79
  • 期号:2
  • 页码:298-335
  • DOI:10.1007/s13171-017-0107-5
  • 语种:English
  • 出版社:Indian Statistical Institute
  • 摘要:Estimator selection has become a crucial issue in non parametric estimation. Two widely used methods are penalized empirical risk minimization (such as penalized log-likelihood estimation) or pairwise comparison (such as Lepski’s method). Our aim in this paper is twofold. First we explain some general ideas about the calibration issue of estimator selection methods. We review some known results, putting the emphasis on the concept of minimal penalty which is helpful to design data-driven selection criteria. Secondly we present a new method for bandwidth selection within the framework of kernel density density estimation which is in some sense intermediate between these two main methods mentioned above. We provide some theoretical results which lead to some fully data-driven selection strategy.
  • 关键词:Concentration inequalities ; Kernel density estimation ; Penalization methods ; Estimator selection ; Oracle inequality
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有