首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Bayesian Consistency for Markov Models
  • 作者:Isadora Antoniano-Villalobos ; Stephen G. Walker
  • 期刊名称:Sankhya. Series A, mathematical statistics and probability
  • 印刷版ISSN:0976-836X
  • 电子版ISSN:0976-8378
  • 出版年度:2015
  • 卷号:77
  • 期号:1
  • 页码:106-125
  • DOI:10.1007/s13171-014-0055-2
  • 语种:English
  • 出版社:Indian Statistical Institute
  • 摘要:We consider sufficient conditions for Bayesian consistency of the transition density of time homogeneous Markov processes. To date, this remains somewhat of an open problem, due to the lack of suitable metrics with which to work. Standard metrics seem inadequate, even for simple autoregressive models. Current results derive from generalizations of the i.i.d. case and additionally require some non-trivial model assumptions. We propose suitable neighborhoods with which to work and derive sufficient conditions for posterior consistency which can be applied in general settings. We illustrate the applicability of our result with some examples; in particular, we apply our result to a general family of nonparametric time series models.
  • 关键词:Nonparametric mixture ; Posterior consistency ; Transition density ; Markov process ; Martingale sequence.
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有