首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Maximum likelihood characterization of rotationally symmetric distributions on the sphere
  • 作者:Mitia Duerinckx ; Christophe Ley
  • 期刊名称:Sankhya. Series A, mathematical statistics and probability
  • 印刷版ISSN:0976-836X
  • 电子版ISSN:0976-8378
  • 出版年度:2012
  • 卷号:74
  • 期号:2
  • 页码:249-262
  • DOI:10.1007/s13171-012-0004-x
  • 语种:English
  • 出版社:Indian Statistical Institute
  • 摘要:A classical characterization result, which can be traced back to Gauss, states that the maximum likelihood estimator (MLE) of the location parameter equals the sample mean for any possible univariate samples of any possible sizes n if and only if the samples are drawn from a Gaussian population. A similar result, in the two-dimensional case, is given in von Mises (1918) for the Fisher-von Mises-Langevin (FVML) distribution, the equivalent of the Gaussian law on the unit circle. Half a century later, Bingham and Mardia ( 1975 ) extend the result to FVML distributions on the unit sphere \(\mathcal{S}^{k-1}:=\{{\ensuremath{\mathbf{v}}}\in{\mathbb R}^k:{\ensuremath{\mathbf{v}}}'{\ensuremath{\mathbf{v}}}=1\}\) , k ≥ 2. In this paper, we present a general MLE characterization theorem for a large subclass of rotationally symmetric distributions on \(\mathcal{S}^{k-1}\) , k ≥ 2, including the FVML distribution.
  • 关键词:Cauchy’s functional equation ; characterization theorem ; Fisher-von Mises-Langevin distribution ; maximum likelihood estimator ; rotationally symmetric distributions on the sphere
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有