首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Expansions for quantiles and moments of extremes for distributions of exponential power type
  • 作者:Christopher S. Withers ; Saralees Nadarajah
  • 期刊名称:Sankhya. Series A, mathematical statistics and probability
  • 印刷版ISSN:0976-836X
  • 电子版ISSN:0976-8378
  • 出版年度:2011
  • 卷号:73
  • 期号:2
  • 页码:202-217
  • DOI:10.1007/s13171-011-0014-0
  • 语种:English
  • 出版社:Indian Statistical Institute
  • 摘要:Let M nr be the r th largest of a random sample of size n from a distribution F of exponential power type on R . That is, 1- F ( z ) = O ( x d exp(− x )) as x = ( z/σ ) α → ∞. For example, the exponential, gamma, chi-square, Laplace and normal distributions are of this type. We obtain an asymptotic expansion in powers of u 1 = −log(1 − u ) and u 2 = log u 1, for the quantile F −1( u ) near u = 1. From this, we obtain a double expansion in inverse powers of (log n, n ) for the moments of M nr / n 1/ n 1/ α , with the coefficient a polynomial in log log n . We also discuss a possible application to an optimal stopping problem.
  • 关键词:Extremes ; moments optimal stopping ; quantiles
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有