首页    期刊浏览 2025年12月04日 星期四
登录注册

文章基本信息

  • 标题:Skorohod representation theorem via disintegrations
  • 作者:Patrizia Berti ; Luca Pratelli ; Pietro Rigo
  • 期刊名称:Sankhya. Series A, mathematical statistics and probability
  • 印刷版ISSN:0976-836X
  • 电子版ISSN:0976-8378
  • 出版年度:2010
  • 卷号:72
  • 期号:1
  • 页码:208-220
  • DOI:10.1007/s13171-010-0008-3
  • 语种:English
  • 出版社:Indian Statistical Institute
  • 摘要:Let (µ n : n ≥ 0) be Borel probabilities on a metric space S such that µ n → µ0 weakly. Say that Skorohod representation holds if, on some probability space, there are S -valued random variables X n satisfying X n ∼ µ n for all n and X n → X 0 in probability. By Skorohod’s theorem, Skorohod representation holds (with X n → X 0 almost uniformly) if µ0 is separable. Two results are proved in this paper. First, Skorohod representation may fail if µ0 is not separable (provided, of course, non separable probabilities exist). Second, independently of µ0 separable or not, Skorohod representation holds if W (µ n , µ0) → 0 where W is Wasserstein distance (suitably adapted). The converse is essentially true as well. Such a W is a version of Wasserstein distance which can be defined for any metric space S satisfying a mild condition. To prove the quoted results (and to define W ), disintegrable probability measures are fundamental.
  • 关键词:Disintegration ; separable probability measure ; Skorohod representation theorem ; Wasserstein distance ; weak convergence of probability measures
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有