首页    期刊浏览 2025年01月08日 星期三
登录注册

文章基本信息

  • 标题:Eigenvalue Fluctuations for Lattice Anderson Hamiltonians: Unbounded Potentials
  • 本地全文:下载
  • 作者:Marek BISKUP ; Ryoki FUKUSHIMA ; Wolfgang KÖNIG
  • 期刊名称:Interdisciplinary Information Sciences
  • 印刷版ISSN:1340-9050
  • 电子版ISSN:1347-6157
  • 出版年度:2018
  • 卷号:24
  • 期号:1
  • 页码:59-76
  • DOI:10.4036/iis.2018.A.03
  • 语种:English
  • 出版社:The Editorial Committee of the Interdisciplinary Information Sciences
  • 摘要:

    We consider random Schrödinger operators with Dirichlet boundary conditions outside lattice approximations of a smooth Euclidean domain and study the behavior of its lowest-lying eigenvalues in the limit when the lattice spacing tends to zero. Under a suitable moment assumption on the random potential and regularity of the spatial dependence of its mean, we prove that the eigenvalues of the random operator converge to those of a deterministic Schrödinger operator. Assuming also regularity of the variance, the fluctuation of the random eigenvalues around their mean are shown to obey a multivariate central limit theorem. This extends the authors' recent work where similar conclusions have been obtained for bounded random potentials.

  • 关键词:random Schrödinger operator;Anderson Hamiltonian;eigenvalue;homogenization;elliptic regularity theory;Moser iteration;central limit theorem
国家哲学社会科学文献中心版权所有