首页    期刊浏览 2025年07月29日 星期二
登录注册

文章基本信息

  • 标题:Using Computational Text Classification for Qualitative Research and Evaluation in Extension
  • 本地全文:下载
  • 作者:Justin G. Smith ; Reid Tissing
  • 期刊名称:Journal of Extension
  • 印刷版ISSN:0022-0140
  • 电子版ISSN:1077-5315
  • 出版年度:2018
  • 卷号:56
  • 期号:2
  • 出版社:Journal of Extension, Inc.
  • 摘要:This article introduces a process for computational text classification that can be used in a variety of qualitative research and evaluation settings. The process leverages supervised machine learning based on an implementation of a multinomial Bayesian classifier. Applied to a community of inquiry framework, the algorithm was used to identify evidence of cognitive presence, social presence, and teaching presence in the text contributions (44,000 unique posts) of more than 4,000 participants in an online environmental education course. Results indicate that computational text classification can significantly reduce labor costs and can help Extension research faculty scale, accelerate, and ensure reproducibility of their research.
  • 关键词:qualitative research ; natural language processing ; machine learning ; text classification
国家哲学社会科学文献中心版权所有