摘要:Las perturbaciones fisiológicas ante un estado de equilibrio homeostático pueden influir directamente en el desarrollo, crecimiento y remodelación de los tejido blandos. Los vasos sanguíneos han demostrado ser sensibles ante estímulos mecánicos y químicos, observándose una restructuración de los constituyentes de la pared arterial con objeto de conservar el equilibrio biológico, por ejemplo, aumento del espesor y aparición de tensiones residuales en la pared. La persistencia de una condición de hipoxia, asociada a la disminución de la presión parcial de oxígeno en la sangre, conduce a la adaptación de la pared vascular para asegurar la funcionalidad arterial. La hipoxia contribuye al crecimiento y remodelación, modificando las funciones celulares del endoletio y la actividad de la matriz extracelular y músculo liso, provocando un cambio significativo en la respuesta biomecánica de las arterias. Para tal fin, se desarrolla la implementación computacional de modelos constitutivos de crecimiento y remodelación basados en la teoría del crecimiento cinemático dentro de un código de elementos finitos. La modelación matemática considera la descomposición del gradiente de deformaciones y la introducción de variables internas para el tratamiento del crecimiento y remodelación. Como resultados se espera poder predecir la respuesta experimental y desarrollar una metodología capaz de efectuar la caracterización del material.
其他摘要:Las perturbaciones fisiológicas ante un estado de equilibrio homeostático pueden influir directamente en el desarrollo, crecimiento y remodelación de los tejido blandos. Los vasos sanguíneos han demostrado ser sensibles ante estímulos mecánicos y químicos, observándose una restructuración de los constituyentes de la pared arterial con objeto de conservar el equilibrio biológico, por ejemplo, aumento del espesor y aparición de tensiones residuales en la pared. La persistencia de una condición de hipoxia, asociada a la disminución de la presión parcial de oxígeno en la sangre, conduce a la adaptación de la pared vascular para asegurar la funcionalidad arterial. La hipoxia contribuye al crecimiento y remodelación, modificando las funciones celulares del endoletio y la actividad de la matriz extracelular y músculo liso, provocando un cambio significativo en la respuesta biomecánica de las arterias. Para tal fin, se desarrolla la implementación computacional de modelos constitutivos de crecimiento y remodelación basados en la teoría del crecimiento cinemático dentro de un código de elementos finitos. La modelación matemática considera la descomposición del gradiente de deformaciones y la introducción de variables internas para el tratamiento del crecimiento y remodelación. Como resultados se espera poder predecir la respuesta experimental y desarrollar una metodología capaz de efectuar la caracterización del material.