首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Unsupervised Domain Adaptation for Facial Expression Recognition Using Generative Adversarial Networks
  • 本地全文:下载
  • 作者:Xiaoqing Wang ; Xiangjun Wang ; Yubo Ni
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2018
  • 卷号:2018
  • DOI:10.1155/2018/7208794
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In the facial expression recognition task, a good-performing convolutional neural network (CNN) model trained on one dataset (source dataset) usually performs poorly on another dataset (target dataset). This is because the feature distribution of the same emotion varies in different datasets. To improve the cross-dataset accuracy of the CNN model, we introduce an unsupervised domain adaptation method, which is especially suitable for unlabelled small target dataset. In order to solve the problem of lack of samples from the target dataset, we train a generative adversarial network (GAN) on the target dataset and use the GAN generated samples to fine-tune the model pretrained on the source dataset. In the process of fine-tuning, we give the unlabelled GAN generated samples distributed pseudolabels dynamically according to the current prediction probabilities. Our method can be easily applied to any existing convolutional neural networks (CNN). We demonstrate the effectiveness of our method on four facial expression recognition datasets with two CNN structures and obtain inspiring results.
国家哲学社会科学文献中心版权所有