首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Multiclass Motor Imagery Recognition of Single Joint in Upper Limb Based on NSGA- II OVO TWSVM
  • 本地全文:下载
  • 作者:Shan Guan ; Kai Zhao ; Fuwang Wang
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2018
  • 卷号:2018
  • DOI:10.1155/2018/6265108
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In the study of the brain computer interface (BCI) system, electroencephalogram (EEG) signals induced by different movements of the same joint are hard to distinguish. This paper proposes a novel scheme that combined amplitude-frequency (AF) information of intrinsic mode function (IMF) with common spatial pattern (CSP), namely, AF-CSP to extract motor imagery (MI) features, and to improve classification performance, the second generation nondominated sorting evolutionary algorithm (NSGA-II) is used to tune hyperparameters for linear and nonlinear kernel one versus one twin support vector machine (OVO TWSVM). This model is compared with least squares support vector machine (LS-SVM), back propagation (BP), extreme learning machine (ELM), particle swarm optimization support vector machine (PSO-SVM), and grid search OVO TWSVM (GS OVO TWSVM) on our dataset; the recognition accuracy increased by 5.92%, 22.44%, 22.65%, 8.69%, and 5.75%. The proposed method has helped to achieve higher accuracy in BCI systems.
国家哲学社会科学文献中心版权所有