首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Non-Structured Materials Science Data Sharing Based on Semantic Annotation
  • 作者:Changjun Hu ; Chunping Ouyang ; Jinbin Wu
  • 期刊名称:Data Science Journal
  • 电子版ISSN:1683-1470
  • 出版年度:2015
  • 卷号:8
  • DOI:10.2481/dsj.007-042
  • 语种:English
  • 出版社:Ubiquity Press
  • 摘要:The explosion of non-structured materials science data makes it urgent for materials researchers to resolve the problem of how to effectively share this information. Materials science image data is an important class of non-structured data. This paper proposes a semantic annotation method to resolve the problem of materials science image data sharing. This method is implemented by a four-layer architecture, which includes ontology building, semantic annotation, reasoning service, and application. We take metallographic image data as an example and build a metallographic image OWL-ontology. Users can accomplish semantic annotation of metallographic image according to the ontology. Reasoning service is provided in a data sharing application to demonstrate the effective sharing of materials science image data through adding semantic annotation.
  • 关键词:Non-structured data; Materials science image; Data sharing; Domain knowledge ontology; Semantic annotation; Metallographic image ontology
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有