首页    期刊浏览 2025年07月05日 星期六
登录注册

文章基本信息

  • 标题:Data mining techniques to study voting patterns in the US
  • 本地全文:下载
  • 作者:Sikha Bagui ; Dustin Mink ; Patrick Cash
  • 期刊名称:Data Science Journal
  • 电子版ISSN:1683-1470
  • 出版年度:2015
  • 卷号:6
  • DOI:10.2481/dsj.6.46
  • 语种:English
  • 出版社:Ubiquity Press
  • 摘要:This paper presents data mining techniques that can be used to study voting patterns in the United States House of Representatives and shows how the results can be interpreted. We processed the raw data available at http://clerk.house.gov, performed t-weight calculations, an attribute relevance study, association rule mining, and decision tree analysis and present and interpret interesting results. WEKA and SQL Server 2005 were used for mining association rules and decision tree analysis.
  • 关键词:Data mining; Data preprocessing; Attribute relevance study; Association rule mining; Decision tree analysis; Voting patterns.
国家哲学社会科学文献中心版权所有