首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Concept based clustering for descriptive document classification
  • 本地全文:下载
  • 作者:S Kannan ; N Ramaraj
  • 期刊名称:Data Science Journal
  • 电子版ISSN:1683-1470
  • 出版年度:2015
  • 卷号:6
  • DOI:10.2481/dsj.6.91
  • 语种:English
  • 出版社:Ubiquity Press
  • 摘要:We present an approach for improving the relevance of search results by clustering the search results obtained for a query string with the help of a Concept Clustering Algorithm. The Concept Clustering Algorithm combines common phrase discovery and latent semantic indexing techniques to separate search results into meaningful groups. It looks for meaningful phrases to use as cluster labels and then assigns documents to the labels to form groups. The labels assigned to each document cluster provide meaningful information on the various documents available under that cluster. This provides a more interactive and easier way to probe through search results and identifying the relevant documents for the users using the search engine.
  • 关键词:Web search; Concept-based clustering; Document classification; Vector space model; Singular value decomposition; Latent semantic indexing
国家哲学社会科学文献中心版权所有