出版社:Departamento de Engenharia de Produção e Sistemas
摘要:A manufatura de produtos personalizados, também conhecida como customização em massa, implica no aumento da variedade de modelos e demanda redução no tamanho dos lotes de produção. Tarefas que dependem da habilidade humana são especialmente afetadas nesse contexto, visto que os trabalhadores precisam se adaptar às características do novo modelo. Esse processo de adaptação dificulta a operacionalização de técnicas de programação de tarefas, uma vez que o tempo de processamento da tarefa é de difícil determinação. Este artigo integra informações oriundas da modelagem de curvas de aprendizado a heurísticas de programação de tarefas voltadas à minimização do tempo demandado para término de um conjunto de tarefas. O tempo de processamento de lotes (tarefas) com diferentes tamanhos e graus de complexidade é estimado através de curvas de aprendizado, sendo então utilizado em heurísticas para programação de tarefas em equipes de trabalhadores paralelos não relacionados. A heurística recomendada, identificada através de simulação, apresenta um desvio de 4,9% em relação ao tempo de término da sequência ótima de tarefas e conduz a um nível satisfatório de ocupação entre as equipes. A heurística é aplicada em um processo da indústria calçadista
其他摘要:Mass customization implies in large variety of product models and small lot sizes. Human-based activities are highly affected by the learning process as a new model is put into production. That makes estimation of lot processing times difficult and jeopardizes the efficiency of scheduling techniques. The method proposed in this paper integrates information from learning curve modeling and scheduling heuristics, aiming at minimizing the completion time of jobs to be processed. Lot processing time is estimated by means of learning curve modeling and then used in scheduling heuristics for the unrelated parallel workers problem. The completion time generated by the recommended heuristic, determined through simulation, deviates 4.9% from the optimal sequence and yields good work balance among teams of workers. The heuristic is demonstrated in a shoe manufacturing process.
关键词:Curvas de aprendizado. Programação de tarefas. Máquinas paralelas não relacionadas