首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:The Nehari manifold for a boundary value problem involving Riemann–Liouville fractional derivative
  • 本地全文:下载
  • 作者:Kamel Saoudi ; Praveen Agarwal ; Poom Kumam
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2018
  • 卷号:2018
  • 期号:1
  • 页码:263
  • DOI:10.1186/s13662-018-1722-8
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:We aim to investigate the following nonlinear boundary value problems of fractional differential equations: ( P λ ) { − t D 1 α ( | 0 D t α ( u ( t ) ) | p − 2 0 D t α u ( t ) ) = f ( t , u ( t ) ) + λ g ( t ) | u ( t ) | q − 2 u ( t ) ( t ∈ ( 0 , 1 ) ) , u ( 0 ) = u ( 1 ) = 0 , $$\begin{aligned} (\mathrm{P}_{\lambda}) \left \{ \textstyle\begin{array}{l} -_{t}D_)^{\alpha} ( \vert {}_(D_{t}^{\alpha}(u(t)) \vert ^{p-2} {}_(D_{t}^{\alpha}u(t) ) \\ \quad=f(t,u(t))+\lambda g(t) \vert u(t) \vert ^{q-2}u(t)\quad (t\in(0,1)),\\ u(0)=u(1)=0, \end{array}\displaystyle \right . \end{aligned}$$ where λ is a positive parameter, 2 < r < p < q $2< r< p< q$ , 1 2 < α < 1 $\frac),<\alpha < 1$ , g ∈ C ( [ 0 , 1 ] ) $g\in C([0,1])$ , and f ∈ C ( [ 0 , 1 ] × R , R ) $f\in C([0,1]\times\mathbb{R},\mathbb{R})$ . Under appropriate assumptions on the function f, we employ the method of Nehari manifold combined with the fibering maps in order to show the existence of solutions to the boundary value problem for the nonlinear fractional differential equations with Riemann–Liouville fractional derivative. We also present an example as an application.
国家哲学社会科学文献中心版权所有