首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Periodic solutions for complex-valued neural networks of neutral type by combining graph theory with coincidence degree theory
  • 本地全文:下载
  • 作者:Zhengqiu Zhang ; Jinde Cao
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2018
  • 卷号:2018
  • 期号:1
  • 页码:261
  • DOI:10.1186/s13662-018-1716-6
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In this paper, by combining graph theory with coincidence degree theory as well as Lyapunov functional method, sufficient conditions to guarantee the existence and global exponential stability of periodic solutions of the complex-valued neural networks of neutral type are established. In our results, the assumption on the boundedness for the activation function in (Gao and Du in Discrete Dyn. Nat. Soc. 2016:Article ID 1267954, 2016) is removed and the other inequality conditions in (Gao and Du in Discrete Dyn. Nat. Soc. 2016:Article ID 1267954, 2016) are replaced with new inequalities.
国家哲学社会科学文献中心版权所有