首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Existence results for fractional order differential equation with nonlocal Erdélyi–Kober and generalized Riemann–Liouville type integral boundary conditions at resonance
  • 本地全文:下载
  • 作者:Qiao Sun ; Shuman Meng ; Yujun Cui
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2018
  • 卷号:2018
  • 期号:1
  • 页码:243
  • DOI:10.1186/s13662-018-1668-x
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In this paper, we discuss a nonlinear fractional order boundary value problem with nonlocal Erdélyi–Kober and generalized Riemann–Liouville type integral boundary conditions. By using Mawhin continuation theorem, we investigate the existence of solutions of this boundary value problem at resonance. It is shown that the boundary value problem D q c x ( t ) = f ( t , x ( t ) , x ′ ( t ) ) , t ∈ [ 0 , T ] , 1 < q ≤ 2 , x ( 0 ) = α I η γ , δ x ( ζ ) , x ( T ) = β ρ I p x ( ξ ) , $$\begin{gathered} {}^{c}D^{q}x(t)=f \bigl(t, x(t),x'(t) \bigr),\quad t \in[0,T], 1< q\leq2, \\ x(0)=\alpha I^{\gamma,\delta}_{\eta}x(\zeta),\qquad x(T)=\beta{}^{\rho }I^{p}x( \xi),\end{gathered} $$ has at least one solution under some suitable conditions, where α , β ∈ R $\alpha, \beta\in\mathbb{R}$ , 0 < ζ , ξ < T $0<\zeta, \xi
国家哲学社会科学文献中心版权所有