摘要:The objective of this paper is to offer sufficient conditions for the oscillation of all solutions of the third order nonlinear damped dynamic equation with mixed arguments of the form ( r 2 ( r 1 ( y Δ ) α ) Δ ) Δ ( t ) + p ( t ) ψ ( t , y Δ ( a ( t ) ) ) + q ( t ) f ( t , y ( g ( t ) ) ) = 0 $$\bigl(r_,\bigl(r_)\bigl(y^{\Delta}\bigr)^{\alpha}\bigr)^{\Delta}\bigr)^{\Delta}(t)+p(t)\psi \bigl(t,y^{\Delta}\bigl(a(t)\bigr)\bigr)+q(t)f\bigl(t,y\bigl(g(t)\bigr) \bigr)=0 $$ on time scales, where a ( t ) ≥ t $a(t)\geq t$ and g ( t ) ≤ t $g(t)\leq t$ . Using Riccati transformation, integral averaging technique, and comparison theorem, we give some new criteria for the oscillation of the studied equation. Our results essentially improve and complement the earlier ones.