首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Evaluation of signature verification reliability based on artificial neural networks, Bayesian multivariate functional and quadratic forms
  • 本地全文:下载
  • 作者:A.I. Ivanov ; P.S. Lozhnikov ; A.E. Sulavko
  • 期刊名称:Computer Optics / Компьютерная оптика
  • 印刷版ISSN:0134-2452
  • 电子版ISSN:2412-6179
  • 出版年度:2017
  • 卷号:41
  • 期号:5
  • 页码:765-774
  • 语种:Russian
  • 出版社:Samarskii Natsional'nyi Issledovatel'skii Universitet imeni Akademika S.P. Koroleva,Samara National Research University
  • 摘要:An experimental comparison of various functional neural networks for signature verification is performed. A signature database for the realization of the computing experiment is built. It is confirmed that up to a certain point, the increase of the decision rule dimension reduces the probability of signature verification error, with an increase in the number of neurons in the network reducing the number of errors. A higher-dimension multi-dimensional Bayes functional with stronger inter-feature correlation is found to perform better. The best result for the signature verification is obtained using networks of Bayesian multidimensional functional, with false acceptance rate of FRR= 0.0288 and false rejection rate of FAR = 0.0232.
国家哲学社会科学文献中心版权所有