首页    期刊浏览 2025年02月27日 星期四
登录注册

文章基本信息

  • 标题:Spectral-spatial classification with k-means++ particional clustering
  • 作者:E.A. Zimichev ; N.L. Kazanskiy ; P.G. Serafimovich
  • 期刊名称:Computer Optics / Компьютерная оптика
  • 印刷版ISSN:0134-2452
  • 电子版ISSN:2412-6179
  • 出版年度:2014
  • 卷号:38
  • 期号:2
  • 页码:281-286
  • 语种:Russian
  • 出版社:Samarskii Natsional'nyi Issledovatel'skii Universitet imeni Akademika S.P. Koroleva,Samara National Research University
  • 摘要:A complex spectral–spatial classification scheme for hyperspectral images is proposed and explored. The key feature of method is using widespread and simple enough algorithms while having high precision. The method combines the results of a pixel wise support vector machine classification and the segmentation map obtained by partitional clustering using majority voting. The k-means++ clusterization algorithm is used for image clustering. Principal component analysis is used to prevent redundant processing of similar data. The proposed method provides improved precision and speed of hyperspectral data classification.
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有