首页    期刊浏览 2024年09月01日 星期日
登录注册

文章基本信息

  • 标题:Commuting-Adjusted Short-Term Health Impact Assessment of Airborne Fine Particles with Uncertainty Quantification via Monte Carlo Simulation
  • 作者:Michela Baccini ; Laura Grisotto ; Dolores Catelan
  • 期刊名称:Environmental Health Perspectives
  • 印刷版ISSN:0091-6765
  • 电子版ISSN:1552-9924
  • 出版年度:2015
  • 卷号:123
  • 期号:1
  • 页码:27-33
  • DOI:10.1289/ehp.1408218
  • 语种:English
  • 出版社:OCR Subscription Services Inc
  • 摘要:Background: Exposure to air pollution is associated with a short-term increase in mortality, and this field has begun to focus on health impact assessment. Objectives: Our aim was to estimate the impact of PM10 on mortality within 2 days from the exposure in the Italian region of Lombardy for the year 2007, at the municipality level, examining exposure entailed by daily intermunicipality commuting and accounting for uncertainty propagation. Methods: We combined data from different sources to derive probabilistic distributions for all input quantities used to calculate attributable deaths (mortality rates, PM10 concentrations, estimated PM10 effects, and commuting flows) and applied a Monte Carlo procedure to propagate uncertainty and sample the distribution of attributable deaths for each municipality. Results: We estimated that annual average PM10 concentrations above the World Health Organization-recommended threshold of 20 μg/m3 were responsible for 865 short-term deaths (80% credibility interval: 475, 1,401), 26% of which were attributable to PM10 above the European Union limit of 40 μg/m3. Reducing annual average PM10 concentrations > 20 μg/m3 by 20% would have reduced the number of attributable deaths by 36%. The largest estimated impacts were along the basin of the Po River and in the largest cities. Commuting contributed to the spatial distribution of the estimated impact. Conclusions: Our estimates, which incorporated uncertainty quantification, indicate that the short-term impact of PM10 on mortality in Lombardy in 2007 was notable, and that reduction in air pollution would have had a substantial beneficial effect on population health. Using commuting data helped to identify critical areas for prioritizing intervention. Citation: Baccini M, Grisotto L, Catelan D, Consonni D, Bertazzi PA, Biggeri A. 2015. Commuting-adjusted short-term health impact assessment of airborne fine particles with uncertainty quantification via Monte Carlo simulation. Environ Health Perspect 123:27–33; http://dx.doi.org/10.1289/ehp.1408218
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有