首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Profiling of the Tox21 Chemical Collection for Mitochondrial Function to Identify Compounds that Acutely Decrease Mitochondrial Membrane Potential
  • 作者:Matias S. Attene-Ramos ; Ruili Huang ; Sam Michael
  • 期刊名称:Environmental Health Perspectives
  • 印刷版ISSN:0091-6765
  • 电子版ISSN:1552-9924
  • 出版年度:2015
  • 卷号:123
  • 期号:1
  • 页码:49-56
  • DOI:10.1289/ehp.1408642
  • 语种:English
  • 出版社:OCR Subscription Services Inc
  • 摘要:Background: Mitochondrial dysfunction has been implicated in the pathogenesis of a variety of disorders including cancer, diabetes, and neurodegenerative and cardiovascular diseases. Understanding whether different environmental chemicals and druglike molecules impact mitochondrial function represents an initial step in predicting exposure-related toxicity and defining a possible role for such compounds in the onset of various diseases. Objectives: We sought to identify individual chemicals and general structural features associated with changes in mitochondrial membrane potential (MMP). Methods: We used a multiplexed [two end points in one screen; MMP and adenosine triphosphate (ATP) content] quantitative high throughput screening (qHTS) approach combined with informatics tools to screen the Tox21 library of 10,000 compounds (~ 8,300 unique chemicals) at 15 concentrations each in triplicate to identify chemicals and structural features that are associated with changes in MMP in HepG2 cells. Results: Approximately 11% of the compounds (913 unique compounds) decreased MMP after 1 hr of treatment without affecting cell viability (ATP content). In addition, 309 compounds decreased MMP over a concentration range that also produced measurable cytotoxicity [half maximal inhibitory concentration (IC50) in MMP assay/IC50 in viability assay ≤ 3; p < 0.05]. More than 11% of the structural clusters that constitute the Tox21 library (76 of 651 clusters) were significantly enriched for compounds that decreased the MMP. Conclusions: Our multiplexed qHTS approach allowed us to generate a robust and reliable data set to evaluate the ability of thousands of drugs and environmental compounds to decrease MMP. The use of structure-based clustering analysis allowed us to identify molecular features that are likely responsible for the observed activity. Citation: Attene-Ramos MS, Huang R, Michael S, Witt KL, Richard A, Tice RR, Simeonov A, Austin CP, Xia M. 2015. Profiling of the Tox21 chemical collection for mitochondrial function to identify compounds that acutely decrease mitochondrial membrane potential. Environ Health Perspect 123:49–56; http://dx.doi.org/10.1289/ehp.1408642
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有