摘要:Background Because of the ubiquitous nature of phthalates in the environment and the potential for adverse human health effects, an urgent need exists to identify the most important sources and pathways of exposure. Objectives Using emissions of di(2-ethylhexyl) phthalate (DEHP) from vinyl flooring (VF) as an illustrative example, we describe a fundamental approach that can be used to identify the important sources and pathways of exposure associated with phthalates in indoor material. Methods We used a three-compartment model to estimate the emission rate of DEHP from VF and the evolving exposures via inhalation, dermal absorption, and oral ingestion of dust in a realistic indoor setting. Results A sensitivity analysis indicates that the VF source characteristics (surface area and material-phase concentration of DEHP), as well as the external mass-transfer coefficient and ventilation rate, are important variables that influence the steady-state DEHP concentration and the resulting exposure. In addition, DEHP is sorbed by interior surfaces, and the associated surface area and surface/air partition coefficients strongly influence the time to steady state. The roughly 40-fold range in predicted exposure reveals the inherent difficulty in using biomonitoring to identify specific sources of exposure to phthalates in the general population. Conclusions The relatively simple dependence on source and chemical-specific transport parameters suggests that the mechanistic modeling approach could be extended to predict exposures arising from other sources of phthalates as well as additional sources of other semivolatile organic compounds (SVOCs) such as biocides and flame retardants. This modeling approach could also provide a relatively inexpensive way to quantify exposure to many of the SVOCs used in indoor materials and consumer products.