首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:A Comparison of Vascular Effects from Complex and Individual Air Pollutants Indicates a Role for Monoxide Gases and Volatile Hydrocarbons
  • 作者:Matthew J. Campen ; Amie K. Lund ; Melanie L. Doyle-Eisele
  • 期刊名称:Environmental Health Perspectives
  • 印刷版ISSN:0091-6765
  • 电子版ISSN:1552-9924
  • 出版年度:2010
  • 卷号:118
  • 期号:7
  • 页码:921-927
  • DOI:10.1289/ehp.0901207
  • 语种:English
  • 出版社:OCR Subscription Services Inc
  • 摘要:Background Emerging evidence suggests that the systemic vasculature may be a target of inhaled pollutants of vehicular origin. We have identified several murine markers of vascular toxicity that appear sensitive to inhalation exposures to combustion emissions. Objective We sought to examine the relative impact of various pollutant atmospheres and specific individual components on these markers of altered vascular transcription and lipid peroxidation. Methods Apolipoprotein E knockout (ApoE−/−) mice were exposed to whole combustion emissions (gasoline, diesel, coal, hardwood), biogenically derived secondary organic aerosols (SOAs), or prominent combustion-source gases [nitric oxide (NO), NO2, carbon monoxide (CO)] for 6 hr/day for 7 days. Aortas were assayed for transcriptional alterations of endothelin-1 ( ET-1 ), matrix metalloproteinase-9 ( MMP-9 ), tissue inhibitor of metalloproteinase-2 ( TIMP-2 ), and heme oxygenase-1 ( HO-1 ), along with measures of vascular lipid peroxides (LPOs) and gelatinase activity. Results We noted transcriptional alterations with exposures to gasoline and diesel emissions. Interestingly, ET-1 and MMP-9 transcriptional effects could be recreated by exposure to CO and NO, but not NO2 or SOAs. Gelatinase activity aligned with levels of volatile hydrocarbons and also monoxide gases. Neither gases nor particles induced vascular LPO despite potent effects from whole vehicular emissions. Conclusions In this head-to-head comparison of the effects of several pollutants and pollutant mixtures, we found an important contribution to vascular toxicity from readily bioavailable monoxide gases and possibly from volatile hydrocarbons. These data support a role for traffic-related pollutants in driving cardiopulmonary morbidity and mortality.
  • 关键词:atherosclerosis; carbon monoxide; cardiovascular; lipid peroxidation; nitric oxide; particulate matter; vascular remodeling; zymography
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有