首页    期刊浏览 2024年10月05日 星期六
登录注册

文章基本信息

  • 标题:Acute Effects of Air Pollution on Pulmonary Function, Airway Inflammation, and Oxidative Stress in Asthmatic Children
  • 作者:Ling Liu ; Raymond Poon ; Li Chen
  • 期刊名称:Environmental Health Perspectives
  • 印刷版ISSN:0091-6765
  • 电子版ISSN:1552-9924
  • 出版年度:2009
  • 卷号:117
  • 期号:4
  • 页码:668-674
  • DOI:10.1289/ehp11813
  • 语种:English
  • 出版社:OCR Subscription Services Inc
  • 摘要:Background Air pollution is associated with respiratory symptoms, lung function decrements, and hospitalizations. However, there is little information about the influence of air pollution on lung injury. Objective In this study we investigated acute effects of air pollution on pulmonary function and airway oxidative stress and inflammation in asthmatic children. Methods We studied 182 children with asthma, 9–14 years of age, for 4 weeks. Daily ambient concentrations of sulfur dioxide, nitrogen dioxide, ozone, and particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5) were monitored from two stations. Once a week we measured spirometry and fractional exhaled nitric oxide (FeNO), and determined thiobarbituric acid reactive substances (TBARS) and 8-isoprostane—two oxidative stress markers—and interleukin-6 (IL-6) in breath condensate. We tested associations using mixed-effects regression models, adjusting for confounding variables. Results Interquartile-range increases in 3-day average SO2 (5.4 ppb), NO2 (6.8 ppb), and PM2.5 (5.4 μg/m3) were associated with decreases in forced expiratory flow between 25% and 75% of forced vital capacity, with changes being −3.1% [95% confidence interval (CI), −5.8 to −0.3], −2.8% (95% CI, −4.8 to −0.8), and −3.0% (95% CI, −4.7 to −1.2), respectively. SO2, NO2, and PM2.5 were associated with increases in TBARS, with changes being 36.2% (95% CI, 15.7 to 57.2), 21.8% (95% CI, 8.2 to 36.0), and 24.8% (95% CI, 10.8 to 39.4), respectively. Risk estimates appear to be larger in children not taking corticosteroids than in children taking corticosteroids. O3 (5.3 ppb) was not associated with health end points. FeNO, 8-isoprostane, and IL-6 were not associated with air pollutants. Conclusion Air pollution may increase airway oxidative stress and decrease small airway function of asthmatic children. Inhaled corticosteroids may reduce oxidative stress and improve airway function.
  • 关键词:air pollution; asthma; children; exhaled breath condensate; inflammation; oxidative stress; pulmonary function
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有