首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:The Role of Particulate Matter-Associated Zinc in Cardiac Injury in Rats
  • 作者:Urmila P. Kodavanti ; Mette C. Schladweiler ; Peter S. Gilmour
  • 期刊名称:Environmental Health Perspectives
  • 印刷版ISSN:0091-6765
  • 电子版ISSN:1552-9924
  • 出版年度:2008
  • 卷号:116
  • 期号:1
  • 页码:13-20
  • DOI:10.1289/ehp.10379
  • 语种:English
  • 出版社:OCR Subscription Services Inc
  • 摘要:Background Exposure to particulate matter (PM) has been associated with increased cardiovascular morbidity; however, causative components are unknown. Zinc is a major element detected at high levels in urban air. Objective We investigated the role of PM-associated zinc in cardiac injury. Methods We repeatedly exposed 12- to 14-week-old male Wistar Kyoto rats intratracheally (1×/week for 8 or16 weeks) to a ) saline (control); b ) PM having no soluble zinc (Mount St. Helens ash, MSH); or c ) whole-combustion PM suspension containing 14.5 μg/mg of water-soluble zinc at high dose (PM-HD) and d ) low dose (PM-LD), e ) the aqueous fraction of this suspension (14.5 μg/mg of soluble zinc) (PM-L), or f ) zinc sulfate (rats exposed for 8 weeks received double the concentration of all PM components of rats exposed for 16 weeks). Results Pulmonary inflammation was apparent in all exposure groups when compared with saline (8 weeks > 16 weeks). PM with or without zinc, or with zinc alone caused small increases in focal subepicardial inflammation, degeneration, and fibrosis. Lesions were not detected in controls at 8 weeks but were noted at 16 weeks. We analyzed mitochondrial DNA damage using quantitative polymerase chain reaction and found that all groups except MSH caused varying degrees of damage relative to control. Total cardiac aconitase activity was inhibited in rats receiving soluble zinc. Expression array analysis of heart tissue revealed modest changes in mRNA for genes involved in signaling, ion channels function, oxidative stress, mitochondrial fatty acid metabolism, and cell cycle regulation in zinc but not in MSH-exposed rats. Conclusion These results suggest that water-soluble PM-associated zinc may be one of the causal components involved in PM cardiac effects.
  • 关键词:aconitase; air pollution; cardiac gene expression profile; mitochondria; particulate matter; zinc
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有