首页    期刊浏览 2024年10月05日 星期六
登录注册

文章基本信息

  • 标题:Effect of Inhaled Carbon Ultrafine Particles on Reactive Hyperemia in Healthy Human Subjects
  • 作者:Alpa P. Shah ; Anthony P. Pietropaoli ; Lauren M. Frasier
  • 期刊名称:Environmental Health Perspectives
  • 印刷版ISSN:0091-6765
  • 电子版ISSN:1552-9924
  • 出版年度:2008
  • 卷号:116
  • 期号:3
  • 页码:375-380
  • DOI:10.1289/ehp.10323
  • 语种:English
  • 出版社:OCR Subscription Services Inc
  • 摘要:Background Ultrafine particles (UFP) may contribute to the cardiovascular effects of exposure to particulate air pollution, partly because of their relatively efficient alveolar deposition and potential to enter the pulmonary vascular space. Objectives This study tested the hypothesis that inhalation of elemental carbon UFP alters systemic vascular function. Methods Sixteen healthy subjects (mean age, 26.9 ± 6.5 years) inhaled air or 50 μg/m3 elemental carbon UFP by mouthpiece for 2 hr, while exercising intermittently. Measurements at preexposure baseline, 0 hr (immediately after exposure), 3.5 hr, 21 hr, and 45 hr included vital signs, venous occlusion plethysmography and reactive hyperemia of the forearm, and venous plasma nitrate and nitrite levels. Results Peak forearm blood flow after ischemia increased 3.5 hr after exposure to air but not UFP (change from preexposure baseline, air: 9.31 ± 3.41; UFP: 1.09 ± 2.55 mL/min/100 mL; t -test, p = 0.03). Blood pressure did not change, so minimal resistance after ischemia (mean blood pressure divided by forearm blood flow) decreased with air, but not UFP [change from preexposure baseline, air: −0.48 ± 0.21; UFP: 0.07 ± 0.19 mmHg/mL/min; analysis of variance (ANOVA), p = 0.024]. There was no UFP effect on pre-ischemia forearm blood flow or resistance, or on total forearm blood flow after ischemia. Venous nitrate levels were significantly lower after exposure to carbon UFP compared with air (ANOVA, p = 0.038). There were no differences in venous nitrite levels. Conclusions Inhalation of 50 μg/m3 carbon UFP during intermittent exercise impairs peak forearm blood flow during reactive hyperemia in healthy human subjects.
  • 关键词:air pollution; nitric oxide; particulate matter; reactive hyperemia; vascular
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有