标题:Genetic Variants Associated with Arsenic Susceptibility: Study of Purine Nucleoside Phosphorylase, Arsenic (+3) Methyltransferase, and Glutathione S-Transferase Omega Genes
摘要:Background Individual variability in arsenic metabolism may underlie individual susceptibility toward arsenic-induced skin lesions and skin cancer. Metabolism of arsenic proceeds through sequential reduction and oxidative methylation being mediated by the following genes: purine nucleoside phosphorylase ( PNP ), arsenic (+3) methyltransferase ( As3MT ), glutathione S -transferase omega 1 ( GSTO1 ), and omega 2 ( GSTO2 ). PNP functions as arsenate reductase; As3MT methylates inorganic arsenic and its metabolites; and both GSTO1 and GSTO2 reduce the metabolites. Alteration in functions of these gene products may lead to arsenic-specific disease manifestations. Objectives To find any probable association between arsenicism and the exonic single nucleotide polymorphisms (SNPs) of the above-mentioned arsenic-metabolizing genes, we screened all the exons in those genes in an arsenic-exposed population. Methods Using polymerase chain reaction restriction fragment length polymorphism analysis, we screened the exons in 25 cases (individuals with arsenic-induced skin lesions) and 25 controls (individuals without arsenic-induced skin lesions), both groups drinking similar arsenic-contaminated water. The exonic SNPs identified were further genotyped in a total of 428 genetically unrelated individuals (229 cases and 199 controls) for association study. Results Among four candidate genes, PNP, As3MT, GSTO1, and GSTO2 , we found that distribution of three exonic polymorphisms, His20His, Gly51Ser, and Pro57Pro of PNP , was associated with arsenicism. Genotypes having the minor alleles were significantly overrepresented in the case group: odds ratio (OR) = 1.69 [95% confidence interval (CI), 1.08–2.66] for His20His; OR = 1.66 [95% CI, 1.04–2.64] for Gly51Ser; and OR = 1.67 [95% CI, 1.05–2.66] for Pro57Pro. Conclusions The results indicate that the three PNP variants render individuals susceptible toward developing arsenic-induced skin lesions.