首页    期刊浏览 2024年07月03日 星期三
登录注册

文章基本信息

  • 标题:Formyl-methionyl-leucyl-phenylalanine–Induced Dopaminergic Neurotoxicity via Microglial Activation: A Mediator between Peripheral Infection and Neurodegeneration?
  • 作者:Xi Gao ; Xiaoming Hu ; Li Qian
  • 期刊名称:Environmental Health Perspectives
  • 印刷版ISSN:0091-6765
  • 电子版ISSN:1552-9924
  • 出版年度:2008
  • 卷号:116
  • 期号:5
  • 页码:593-598
  • DOI:10.1289/ehp.11031
  • 语种:English
  • 出版社:OCR Subscription Services Inc
  • 摘要:Background Parkinson disease (PD), a chronic neurodegenerative disease, has been proposed to be a multifactorial disorder resulting from a combination of environmental mechanisms (chemical, infectious, and traumatic), aging, and genetic deficits. Microglial activation is important in the pathogenesis of PD. Objectives We investigated dopaminergic (DA) neurotoxicity and the underlying mechanisms of formyl-methionyl-leucyl-phenylalanine (fMLP), a bacteria-derived peptide, in relation to PD. METHODS: We measured DA neurotoxicity using a DA uptake assay and immunocytochemical staining (ICC) in primary mesencephalic cultures from rodents. Microglial activation was observed via ICC, flow cytometry, and superoxide measurement. Results fMLP can cause selective DA neuronal loss at concentrations as low as 10−13 M. Further, fMLP (10−13 M) led to a significant reduction in DA uptake capacity in neuron/glia (N/G) cultures, but not in microglia-depleted cultures, indicating an indispensable role of microglia in fMLP-induced neurotoxicity. Using ICC of a specific microglial marker, OX42, we observed morphologic changes in activated microglia after fMLP treatment. Microglial activation after fMLP treatment was confirmed by flow cytometry analysis of major histocompatibility antigen class II expression on a microglia HAPI cell line. Mechanistic studies revealed that fMLP (10−13 M)-induced increase in the production of extracellular superoxide from microglia is critical in mediating fMLP-elicited neurotoxicity. Pharmacologic inhibition of NADPH oxidase (PHOX) with diphenylene-iodonium or apocynin abolished the DA neurotoxicity of fMLP. N/G cultures from PHOX-deficient (gp91PHOX−/ −) mice were also insensitive to fMLP-induced DA neurotoxicity. Conclusion fMLP (10−13 M) induces DA neurotoxicity through activation of microglial PHOX and subsequent production of superoxide, suggesting a role of fMLP in the central nervous system inflammatory process.
  • 关键词:fMLP; inflammation; microglia; NADPH oxidase; neurotoxicity
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有