首页    期刊浏览 2024年07月22日 星期一
登录注册

文章基本信息

  • 标题:Unique Bisphenol A Transcriptome in Prostate Cancer: Novel Effects on ERβ Expression That Correspond to Androgen Receptor Mutation Status
  • 作者:Janet K. Hess-Wilson ; Siobhan L. Webb ; Hannah K. Daly
  • 期刊名称:Environmental Health Perspectives
  • 印刷版ISSN:0091-6765
  • 电子版ISSN:1552-9924
  • 出版年度:2007
  • 卷号:115
  • 期号:11
  • 页码:1646-1653
  • DOI:10.1289/ehp.10283
  • 语种:English
  • 出版社:OCR Subscription Services Inc
  • 摘要:Background Prostatic adenocarcinomas are dependent on androgen receptor (AR) activity for growth and progression, and therapy for disseminated disease depends on ablation of AR activity. Recurrent tumors ultimately arise wherein AR has been re-activated. One mechanism of AR restoration is via somatic mutation, wherein cells containing mutant receptors become susceptible to activation by alternative ligands, including bisphenol A (BPA). In tumors with specific AR mutations, BPA promotes therapeutic bypass, suggesting significant negative impact to the clinical management of prostate cancer. Objective Our goal was to determine the mechanism of BPA action in cancer cells carrying BPA-responsive AR mutants. Methods The molecular signature of BPA activity in prostate cancer cells harboring mutant AR was delineated via genetic microarray analysis. Specificity of BPA action was assessed by comparison with the molecular signature elicited by dihydrotestosterone (DHT). Results BPA and DHT elicited distinct transcriptional signatures in prostate cancer cells expressing the BPA-responsive mutant AR-T877A. BPA dramatically attenuated estrogen receptor beta (ERβ) expression; this finding was specific to prostate tumor cells in which BPA induces cellular proliferation. Conclusions BPA induces a distinct gene expression signature in prostate cancer cells expressing somatic AR mutation, and a major molecular consequence of BPA action is down-regulation of ERβ. Since ERβ functions to antagonize AR function and AR-dependent proliferation, these findings reveal a novel mechanism by which BPA likely regulates cellular proliferation. Future investigation directed at dissecting the importance of ERβ in the proliferative response to BPA will establish the contribution of this event to adverse effects associated with human exposure.
  • 关键词:androgen receptor; endocrine disruptor; microarray; prostatic adenocarcinoma; xeno-estrogen
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有