摘要:Although broad links between climatic factors and coccidioidomycosis have been established, the identification of simple and robust relationships linking climatic controls to seasonal timing and outbreaks of the disease has remained elusive. Using an adaptive data-oriented method for estimating date of exposure, in this article I analyze hypotheses linking climate and dust to fungal growth and dispersion, and evaluate their respective roles for Pima County, Arizona. Results confirm a strong bimodal disease seasonality that was suspected but not previously seen in reported data. Dispersion-related conditions are important predictors of coccidioidomycosis incidence during fall, winter, and the arid foresummer. However, precipitation during the normally arid foresummer 1.5–2 years before the season of exposure is the dominant predictor of the disease in all seasons, accounting for half of the overall variance. Cross-validated models combining antecedent and concurrent conditions explain 80% of the variance in coccidioidomycosis incidence.