首页    期刊浏览 2024年08月21日 星期三
登录注册

文章基本信息

  • 标题:Exhaled Nitric Oxide in Children with Asthma and Short-Term PM2.5 Exposure in Seattle
  • 作者:Therese F. Mar ; Karen Jansen ; Kristen Shepherd
  • 期刊名称:Environmental Health Perspectives
  • 印刷版ISSN:0091-6765
  • 电子版ISSN:1552-9924
  • 出版年度:2005
  • 卷号:113
  • 期号:12
  • 页码:1791-1794
  • DOI:10.1289/ehp.7883
  • 语种:English
  • 出版社:OCR Subscription Services Inc
  • 摘要:The objective of this study was to evaluate associations between short-term (hourly) exposures to particulate matter with aerodynamic diameters < 2.5 μm (PM2.5) and the fractional concentration of nitric oxide in exhaled breath (F e NO) in children with asthma participating in an intensive panel study in Seattle, Washington. The exposure data were collected with tapered element oscillation microbalance (TEOM) PM2.5 monitors operated by the local air agency at three sites in the Seattle area. F e NO is a marker of airway inflammation and is elevated in individuals with asthma. Previously, we reported that offline measurements of F e NO are associated with 24-hr average PM2.5 in a panel of 19 children with asthma in Seattle. In the present study using the same children, we used a polynomial distributed lag model to assess the association between hourly lags in PM2.5 exposure and F e NO levels. Our model controlled for age, ambient NO levels, temperature, relative humidity, and modification by use of inhaled corticosteroids. We found that F e NO was associated with hourly averages of PM2.5 up to 10–12 hr after exposure. The sum of the coefficients for the lag times associated with PM2.5 in the distributed lag model was 7.0 ppm F e NO. The single-lag-model F e NO effect was 6.9 [95% confidence interval (CI), 3.4 to 10.6 ppb] for a 1-hr lag, 6.3 (95% CI, 2.6 to 9.9 ppb ) for a 4-hr lag, and 0.5 (95% CI, −1.1 to 2.1 ppb) for an 8-hr lag. These data provide new information concerning the lag structure between PM2.5 exposure and a respiratory health outcome in children with asthma.
  • 关键词:airway inflammation; asthma; children; exhaled nitric oxide; particulate matter less than or equal to 2.5 μm; short-term exposure
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有