摘要:Although the use of amphibole asbestos (crocidolite and amosite) has been banned in most European countries because of its known effects on the lung and pleura, chrysotile asbestos remains in use in a number of widely used products, notably asbestos cement and friction linings in vehicle brakes and clutches. A ban on chrysotile throughout the European Union for these remaining applications is currently under consideration, but this requires confidence in the safety of substitute materials. The main substitutes for the residual uses of chrysotile are p-aramid, polyvinyl alcohol (PVA), and cellulose fibers, and it is these materials that are evaluated here. Because it critically affects both exposure concentrations and deposition in the lung, diameter is a key determinant of the intrinsic hazard of a fiber; the propensity of a material to release fibers into the air is also important. It is generally accepted that to be pathogenic to the lung or pleura, fibers must be long, thin, and durable; fiber chemistry may also be significant. These basic principles are used in a pragmatic way to form a judgement on the relative safety of the substitute materials, taking into account what is known about their hazardous properties and also the potential for uncontrolled exposures during a lifetime of use (including disposal). We conclude that chrysotile asbestos is intrinsically more hazardous than p-aramid, PVA, or cellulose fibers and that its continued use in asbestos-cement products and friction materials is not justifiable in the face of available technically adequate substitutes. Full text Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.8M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References . 607 608 609 610 611