首页    期刊浏览 2025年08月18日 星期一
登录注册

文章基本信息

  • 标题:Position- and base pair-specific comparison of p53 mutation spectra in human tumors: elucidation of relationships between organs for cancer etiology.
  • 作者:W K Lutz ; T Fekete ; S Vamvakas
  • 期刊名称:Environmental Health Perspectives
  • 印刷版ISSN:0091-6765
  • 电子版ISSN:1552-9924
  • 出版年度:1998
  • 卷号:106
  • 期号:4
  • 页码:207-211
  • 语种:English
  • 出版社:OCR Subscription Services Inc
  • 摘要:A new approach to analyze the p53 mutation database of the European Molecular Biology Laboratory for a comparison of mutation spectra is described, with the aim of investigating organ specificity of etiological factors and putative organ-to-organ relationships in cancer pathogenesis. The number of entries of each nucleotide- and base-pair substitution-specific mutation was divided by the total number of tumors analyzed. For each organ pair, the difference of the mutation-specific frequency differences was calculated. Resulting values could range from 0 (full concordance) to 2 (full discordance). Skin, lung, and urinary bladder showed highly independent mutation spectra (maximum discordance value = 1.48 for skin versus brain), in agreement with the presence of specific factors responsible for a large number of the respective tumors (UV light, smoking, aromatic amines). The three organs with the smallest sum of discordance values were mammary gland (breast), colon and esophagus. The minimum organ-to-organ discordance value was 0.95, for stomach versus colon. For these organs, common, possibly also endogenous, cancer risk factors could be postulated as contributing to the observed mutation spectrum. The remaining cancers (ovary, sarcoma, leukemia/lymphoma, brain, head and neck, and stomach, in order or increasing discordance) were of intermediate range and showed a mix of values. Reasons for close relationship to some of the other organs and marked differences to others are discussed. Exclusion of the "hot-spot" mutations did not markedly alter the observed relationships, indicating that a putative selective growth advantage does not cover up the etiological basis for the observed mutation spectrum. It is expected that much more insight into carcinogenesis and cancer could be gained by further exploratory analyses of mutation databases. Full text Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.1M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References . 207 208 209 210 211
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有