首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Magnesium inhibits nickel-induced genotoxicity and formation of reactive oxygen.
  • 作者:Y C Hong ; S R Paik ; H J Lee
  • 期刊名称:Environmental Health Perspectives
  • 印刷版ISSN:0091-6765
  • 电子版ISSN:1552-9924
  • 出版年度:1997
  • 卷号:105
  • 期号:7
  • 页码:744-748
  • 语种:English
  • 出版社:OCR Subscription Services Inc
  • 摘要:Nickel compounds are recognized to cause nasal and lung cancers. Magnesium is an effective protector against nickel-induced carcinogenesis in vivo, although its mechanisms of protection remain elusive. The effects of magnesium carbonate on the cytotoxicity and genotoxicity induced by nickel subsulfide were examined with respect to the inhibition of cell proliferation, micronuclei formation, DNA-protein cross-link formation, and intranuclear nickel concentration. The generation of reactive oxygen by nickel chloride was also analyzed by observing 8-hydroxy-deoxyguanosine formation from deoxyguanosine in the presence and absence of magnesium chloride. The suppression of up to 64% of the proliferation of BALB/3T3 fibroblasts by nickel subsulfide (1 microgram/ml) was reversed by magnesium. The nickel compound increased not only the number of micronuclei but also the amount of DNA-protein cross-links examined with CHO and BALB/3T3 cells, respectively. These genotoxic effects of nickel were again lessened by magnesium carbonate. In addition, the cellular accumulation of nickel increased 80-fold with nickel subsulfide treatment and decreased with magnesium carbonate treatment. Nickel also enhanced 8-hydroxy-deoxyguanosine formation in the presence of H2O2 and ascorbic acid, where magnesium played another suppressive role. In fact, inhibition by magnesium was still observed even in the absence of nickel treatment. These results suggest that the protective role of magnesium in nickel-induced cytotoxicity and genotoxicity can be attributed to its ability to reduce either the intracellular nickel concentration or reactive oxygen formation. Full text Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.7M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References . 744 745 746 747 748
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有