首页    期刊浏览 2024年10月07日 星期一
登录注册

文章基本信息

  • 标题:Airway epithelial cell responses to ozone injury.
  • 作者:G D Leikauf ; L G Simpson ; J Santrock
  • 期刊名称:Environmental Health Perspectives
  • 印刷版ISSN:0091-6765
  • 电子版ISSN:1552-9924
  • 出版年度:1995
  • 卷号:103
  • 期号:Suppl 2
  • 页码:91-95
  • 语种:English
  • 出版社:OCR Subscription Services Inc
  • 摘要:The airway epithelial cells is an important target in ozone injury. Once activated, the airway epithelium responds in three phases. The initial, or immediate phase, involves activation of constitutive cells, often through direct covalent interactions including the formation of secondary ozonolysis products--hydroxyhydroperoxides, aldehydes, and hydrogen peroxide. Recently, we found hydroxyhydroperoxides to be potent agonists of bioactive eicosanoid formation by human airway epithelial cells in culture. Other probable immediate events include activation and inactivation of enzymes present on the epithelial surface (e.g., neutral endopeptidase). During the next 2 to 24 hr, or early phase, epithelial cells respond by synthesis and release of chemotactic factors, including chemokines--macrophage inflammatory protein-2, RANTES, and interleukin-8. Infiltrating leukocytes during this period also release elastase, an important agonist of epithelial cell mucus secretion and additional chemokine formation. The third (late) phase of ozone injury is characterized by eosinophil or monocyte infiltration. Cytokine expression leads to alteration of structural protein synthesis, with increases in fibronectin evident by in situ hybridization. Synthesis of epithelial antiproteases, e.g., secretory leukocyte protease inhibitor, may also increase locally 24 to 48 hr after elastase concentrations become excessive. Thus, the epithelium is not merely a passive barrier to ozone injury but has a dynamic role in directing the migration, activating, and then counteracting inflammatory cells. Through these complex interactions, epithelial cells can be viewed as the initiators (alpha) and the receptors (omega) of ozone-induced airway disease. Full text Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1011K), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References . 91 92 93 94 95
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有