首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Differences in the pathways for metabolism of benzene in rats and mice simulated by a physiological model.
  • 作者:M A Medinsky ; P J Sabourin ; R F Henderson
  • 期刊名称:Environmental Health Perspectives
  • 印刷版ISSN:0091-6765
  • 电子版ISSN:1552-9924
  • 出版年度:1989
  • 卷号:82
  • 页码:43
  • 语种:English
  • 出版社:OCR Subscription Services Inc
  • 摘要:Studies conducted by the National Toxicology Program on the chronic toxicity of benzene indicated that B6C3F1 mice were more sensitive to the carcinogenic effects of benzene than were F344 rats. A physiological model was developed to describe the uptake and metabolism of benzene in rats and mice. Our objective was to determine if differences in toxic effects could be explained by differences in pathways for benzene metabolism or by differences in total uptake of benzene. Compartments incorporated into the model included liver, fat, a poorly perfused tissue group, a richly perfused tissue group, an alveolar or lung compartment and blood. Metabolism of benzene was assumed to take place only in the liver and to proceed by four major competing pathways. These included formation of hydroquinone conjugates (HQC), formation of phenyl conjugates (PHC), ring-breakage and formation of muconic acid (MUC), and conjugation with glutathione with subsequent mercapturic acid (PMA) formation. Values for parameters such as alveolar ventilation, cardiac output, organ volumes, blood flow, partition coefficients, and metabolic rate constants were taken from the literature. Model simulations confirmed that during and after 6-hr inhalation exposures mice metabolized more benzene on a mumole per kilogram body weight basis than did rats. After oral exposure, rats metabolized more benzene than mice at doses above 50 mg/kg because of the more rapid absorption and exhalation of benzene by mice. Model simulations for PHC and PMA, generally considered to be detoxification metabolites, were similar in shape and dose-response to those for total metabolism.(ABSTRACT TRUNCATED AT 250 WORDS) Full text Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.2M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References . 43 44 45 46 47 48 49
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有