摘要:The large body of literature and techniques generated by mammalian toxicity studies provides a conceptual and technical framework within which the absorption, fate, and disposition of xenobiotics in aquatic organisms can be studied. This review emphasizes the similarities and differences between mammalian and aquatic systems, e.g., lung vs. gill as site of absorption and toxicity. These must be taken into consideration when designing aquatic toxicity studies. Studies of phenol red in dogfish shark as an example show physiologic-based pharmacokinetic modeling to be a useful tool for investigating and eventually predicting species differences in xenobiotic disposition and drug differences within the same species. This discussion demonstrates that both laboratory and modeling procedures are now available to carry out sophisticated studies of xenobiotic fate and disposition in fish. Such studies are needed to pinpoint sites and mechanisms of pollutant toxicity in aquatic organisms. Full text Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.4M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References . 17 18 19 20 21 22 23 24