首页    期刊浏览 2024年09月14日 星期六
登录注册

文章基本信息

  • 标题:Sodium arsenite-induced stress-related gene expression in normal human epidermal, HaCaT, and HEL30 keratinocytes.
  • 作者:Kevin J Trouba ; Kristen M Geisenhoffer ; Dori R Germolec
  • 期刊名称:Environmental Health Perspectives
  • 印刷版ISSN:0091-6765
  • 电子版ISSN:1552-9924
  • 出版年度:2002
  • 卷号:110
  • 期号:Suppl 5
  • 页码:761-766
  • 语种:English
  • 出版社:OCR Subscription Services Inc
  • 摘要:Arsenic is a carcinogen that poses a significant health risk in humans. Based on evidence that arsenic has differential effects on human, rodent, normal, and transformed cells, these studies addressed the relative merits of using normal human epidermal keratinocytes (NHEK) and immortalized human (HaCaT) and mouse (HEL30) keratinocytes when examining stress-induced gene expression that may contribute to carcinogenesis. We hypothesize that redox-related gene expression is differentially modulated by arsenic in normal versus immortalized keratinocytes. To test the hypothesis, we exposed keratinocytes to sodium arsenite for 4 or 24 hr, at which time serine threonine kinase-25 (stk25) and nicotine adenine dinucleotide phosphate [nad(p)h] quinone oxidoreductase gene expression were measured. The effect of glutathione reduction on arsenite-induced cytotoxicity and gene expression in NHEK also was evaluated by addition of l-buthionine-[S,R]-sulfoximine (BSO) to culture media. Results indicate the term LC(50) for arsenite is approximately 10-15 microM in NHEK and HEL30 keratinocytes and 30 microM in HaCaT keratinocytes. Compared with HaCaT and HEL30 keratinocytes, a nontoxic concentration of arsenite (2.5 microM) increases stk25 and nad(p)h quinone oxidoreductase gene expression in NHEK, an effect partially attenuated by BSO. These data indicate that NHEK and HaCaT/HEL30 keratinocytes have similar sensitivities toward arsenite-induced cytotoxicity but unique gene expression responses. They also suggest that arsenite modulates gene expression in NHEK involved in cellular signaling and other aspects of intermediary metabolism that may contribute to the carcinogenic process.
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有