摘要:In developing countries, rapid industrialization without environmental controls has resulted in heavy metal contamination of communities. We hypothesized that residential neighborhoods located near ore industries in three northern Mexican cities would be heavily polluted with multiple contaminants (arsenic, cadmium, and lead) and that these sites would be point sources for the heavy metals. To evaluate these hypotheses, we obtained samples of roadside surface dust from residential neighborhoods within 2 m of metal smelters [Torreón (n = 19)] and Chihuahua (n = 19)] and a metal refinery [Monterrey (n = 23)]. Heavy metal concentrations in dust were mapped with respect to distance from the industrial sites. Correlation between dust metal concentration and distance was estimated with least-squares regression using log-transformed data. Median dust arsenic, cadmium, and lead concentrations were 32, 10, and 277 microg/g, respectively, in Chihuahua; 42, 2, and 467 microg/g, respectively, in Monterrey, and 113, 112, and 2,448 microg/g, respectively, in Torreón. Dust concentrations of all heavy metals were significantly higher around the active smelter in Torreón, where more than 90% of samples exceeded Superfund cleanup goals. At all sites, dust concentrations were inversely related to distance from the industrial source, implicating these industries as the likely source of the contamination. We concluded that residential neighborhoods around metal smelting and refining sites in these three cities are contaminated by heavy metals at concentrations likely to pose a health threat to people living nearby. Evaluations of human exposure near these sites should be conducted. Because multiple heavy metal pollutants may exist near smelter sites, researchers should avoid attributing toxicity to one heavy metal unless others have been measured and shown not to coexist. Full text Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (3.5M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References . 279 280 281 282 283 284